Domain-Sharding for Faster HTTP/2 in Lossy Cellular Networks

نویسندگان

  • Utkarsh Goel
  • Moritz Steiner
  • Mike P. Wittie
  • Stephen Ludin
  • Martin Flack
چکیده

HTTP/2 (h2) is a new standard for Web communications that already delivers a large share of Web traffic. Unlike HTTP/1, h2 uses only one underlying TCP connection. In a cellular network with high loss and sudden spikes in latency, which the TCP stack might interpret as loss, using a single TCP connection can negatively impact Web performance. In this paper, we perform an extensive analysis of real world cellular network traffic and design a testbed to emulate loss characteristics in cellular networks. We use the emulated cellular network to measure h2 performance in comparison to HTTP/1.1, for webpages synthesized from HTTP Archive repository data. Our results show that, in lossy conditions, h2 achieves faster page load times (PLTs) for webpages with small objects. For webpages with large objects, h2 degrades the PLT. We devise a new domain-sharding technique that isolates large and small object downloads on separate connections. Using sharding, we show that under lossy cellular conditions, h2 over multiple connections improves the PLT compared to h2 with one connection and HTTP/1.1 with six connections. Finally, we recommend content providers and content delivery networks to apply h2-aware domain-sharding on webpages currently served over h2 for improved mobile Web performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method

Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...

متن کامل

Improving the Performance of RPL Routing Protocol for Internet of Things

The emerging Internet of Things (IoT) connects the physical world to the digital one and composes large networks of smart devices to support various applications. In order to provide a suitable communication in such networks, a reliable routing protocol is needed. In this paper, a modified version of an IPv6 Routing Protocol for Low-Power and Lossy networks (RPL), which has been standardized by...

متن کامل

Is the Web HTTP/2 Yet?

Version 2 of the Hypertext Transfer Protocol (HTTP/2) was finalized in May 2015 as RFC 7540. It addresses well-known problems with HTTP/1.1 (e.g., head of line blocking and redundant headers) and introduces new features (e.g., server push and content priority). Though HTTP/2 is designed to be the future of the web, it remains unclear whether the web will—or should—hop on board. To shed light on...

متن کامل

A survey on RPL attacks and their countermeasures

RPL (Routing Protocol for Low Power and Lossy Networks) has been designed for low power networks with high packet loss. Generally, devices with low processing power and limited memory are used in this type of network. IoT (Internet of Things) is a typical example of low power lossy networks. In this technology, objects are interconnected through a network consisted of low-power circuits. Exampl...

متن کامل

TM3: Flexible Transport-layer Multi-pipe Multiplexing Middlebox Without Head-of-line Blocking

A primary design decision in HTTP/2, the successor of HTTP/1.1, is object multiplexing. While multiplexing improves web performance in many scenarios, it still has several drawbacks due to complex cross-layer interactions. In this paper, we propose a novel multiplexing architecture called TM that overcomes many of these limitations. TM strategically leverages multiple concurrent multiplexing pi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.05836  شماره 

صفحات  -

تاریخ انتشار 2017